Repositorio Dspace

Decision Trees for Glaucoma Screening Based on the Asymmetry of the Retinal Nerve Fiber Layer in Optical Coherence Tomography

Mostrar el registro sencillo del ítem

dc.contributor.author Berenguer-Vidal, Rafael
dc.contributor.author Verdu-Monedero, Rafael
dc.contributor.author Morales-Sánchez, Juan
dc.contributor.author Selles-Navarro, Inmaculada
dc.contributor.author Kovalyk, Oleksandr
dc.contributor.author Sancho-Gómez, José-Luis
dc.date.accessioned 2025-11-26T11:36:23Z
dc.date.available 2025-11-26T11:36:23Z
dc.date.issued 2022-07
dc.identifier.citation Berenguer-Vidal R, Verdú-Monedero R, Morales-Sánchez J, Sellés-Navarro I, Kovalyk O, Sancho-Gómez JL. Decision Trees for Glaucoma Screening Based on the Asymmetry of the Retinal Nerve Fiber Layer in Optical Coherence Tomography. Sensors. 27 de junio de 2022;22(13):4842.
dc.identifier.uri https://sms.carm.es/ricsmur/handle/123456789/22579
dc.description.abstract Purpose: The aim of this study was to analyze the relevance of asymmetry features between both eyes of the same patient for glaucoma screening using optical coherence tomography. Methods: Spectral-domain optical coherence tomography was used to estimate the thickness of the peripapillary retinal nerve fiber layer in both eyes of the patients in the study. These measurements were collected in a dataset from healthy and glaucoma patients. Several metrics for asymmetry in the retinal nerve fiber layer thickness between the two eyes were then proposed. These metrics were evaluated using the dataset by performing a statistical analysis to assess their significance as relevant features in the diagnosis of glaucoma. Finally, the usefulness of these asymmetry features was demonstrated by designing supervised machine learning models that can be used for the early diagnosis of glaucoma. Results: Machine learning models were designed and optimized, specifically decision trees, based on the values of proposed asymmetry metrics. The use of these models on the dataset provided good classification of the patients (accuracy 88%, sensitivity 70%, specificity 93% and precision 75%). Conclusions: The obtained machine learning models based on retinal nerve fiber layer asymmetry are simple but effective methods which offer a good trade-off in classification of patients and simplicity. The fast binary classification relies on a few asymmetry values of the retinal nerve fiber layer thickness, allowing their use in the daily clinical practice for glaucoma screening.
dc.language.iso eng
dc.publisher MDPI
dc.rights Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0 *
dc.subject.mesh Decision Trees
dc.subject.mesh Glaucoma/diagnostic imaging
dc.subject.mesh Humans
dc.subject.mesh Nerve Fibers
dc.subject.mesh Retinal Ganglion Cells
dc.subject.mesh Tomography, Optical Coherence/methods
dc.title Decision Trees for Glaucoma Screening Based on the Asymmetry of the Retinal Nerve Fiber Layer in Optical Coherence Tomography
dc.type info:eu-repo/semantics/article
dc.identifier.pmid 35808338
dc.relation.publisherversion https://www.mdpi.com/1424-8220/22/13/4842
dc.identifier.doi 10.3390/s22134842
dc.journal.title Sensors
dc.identifier.essn 1424-8220


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta