Repositorio Dspace

Automatic Segmentation of the Retinal Nerve Fiber Layer by Means of Mathematical Morphology and Deformable Models in 2D Optical Coherence Tomography Imaging

Mostrar el registro sencillo del ítem

dc.contributor.author Berenguer-Vidal, Rafael
dc.contributor.author Verdú-Monedero, Rafael
dc.contributor.author Morales-Sánchez, Juan
dc.contributor.author Sellés-Navarro, Inmaculada
dc.contributor.author del-Amor, Rocío
dc.contributor.author García, Gabriel
dc.contributor.author Naranjo, Valery
dc.date.accessioned 2025-11-26T11:34:44Z
dc.date.available 2025-11-26T11:34:44Z
dc.date.issued 2021-12
dc.identifier.citation Berenguer-Vidal R, Verdú-Monedero R, Morales-Sánchez J, Sellés-Navarro I, Del Amor R, García G, et al. Automatic Segmentation of the Retinal Nerve Fiber Layer by Means of Mathematical Morphology and Deformable Models in 2D Optical Coherence Tomography Imaging. Sensors. 1 de diciembre de 2021;21(23):8027.
dc.identifier.uri https://sms.carm.es/ricsmur/handle/123456789/22540
dc.description.abstract Glaucoma is a neurodegenerative disease process that leads to progressive damage of the optic nerve to produce visual impairment and blindness. Spectral-domain OCT technology enables peripapillary circular scans of the retina and the measurement of the thickness of the retinal nerve fiber layer (RNFL) for the assessment of the disease status or progression in glaucoma patients. This paper describes a new approach to segment and measure the retinal nerve fiber layer in peripapillary OCT images. The proposed method consists of two stages. In the first one, morphological operators robustly detect the coarse location of the layer boundaries, despite the speckle noise and diverse artifacts in the OCT image. In the second stage, deformable models are initialized with the results of the previous stage to perform a fine segmentation of the boundaries, providing an accurate measurement of the entire RNFL. The results of the RNFL segmentation were qualitatively assessed by ophthalmologists, and the measurements of the thickness of the RNFL were quantitatively compared with those provided by the OCT inbuilt software as well as the state-of-the-art methods.
dc.language.iso eng
dc.publisher MDPI
dc.rights Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0 *
dc.subject.mesh Humans
dc.subject.mesh Nerve Fibers
dc.subject.mesh Neurodegenerative Diseases
dc.subject.mesh Retina/diagnostic imaging
dc.subject.mesh Retinal Ganglion Cells
dc.subject.mesh Tomography, Optical Coherence
dc.title Automatic Segmentation of the Retinal Nerve Fiber Layer by Means of Mathematical Morphology and Deformable Models in 2D Optical Coherence Tomography Imaging
dc.type info:eu-repo/semantics/article
dc.identifier.pmid 34884031
dc.relation.publisherversion https://www.mdpi.com/1424-8220/21/23/8027
dc.identifier.doi 10.3390/s21238027
dc.journal.title Sensors
dc.identifier.essn 1424-8220


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta