Repositorio Dspace

Machine Learning Improves Risk Stratification in Myelodysplastic Neoplasms: An Analysis of the Spanish Group of Myelodysplastic Syndromes

Mostrar el registro sencillo del ítem

dc.contributor.author Mosquera-Orgueira, Adrian
dc.contributor.author Pérez-Encinas, Manuel-Mateo
dc.contributor.author Diaz-Varela, Nicolas-A
dc.contributor.author Mora, Elvira
dc.contributor.author Diaz-Beya, Marina
dc.contributor.author Montoro, María-Julia
dc.contributor.author Pomares, Helena
dc.contributor.author Ramos, Fernando
dc.contributor.author Tormo, Mar
dc.contributor.author Jerez-Cayuela, Andrés
dc.contributor.author Nomdedeu, Josep-F
dc.contributor.author De-Miguel-Sánchez, Carlos
dc.contributor.author Leonor, Arenillas
dc.contributor.author Carcel, Paula
dc.contributor.author Cedena-Romero, María-Teresa
dc.contributor.author Xicoy, Blanca
dc.contributor.author Rivero, Eugenia
dc.contributor.author del-Orbe-Barreto, Rafael-Andres
dc.contributor.author Diez-Campelo, María
dc.contributor.author Benlloch, Luis-E
dc.contributor.author Crucitti, Davide
dc.contributor.author Valcarcel, David
dc.date.accessioned 2025-11-19T15:39:08Z
dc.date.available 2025-11-19T15:39:08Z
dc.date.issued 2023-10
dc.identifier.citation Mosquera Orgueira A, Perez Encinas MM, Diaz Varela NA, Mora E, Díaz-Beyá M, Montoro MJ, et al. Machine Learning Improves Risk Stratification in Myelodysplastic Neoplasms: An Analysis of the Spanish Group of Myelodysplastic Syndromes. HemaSphere. octubre de 2023;7(10):e961.
dc.identifier.uri https://sms.carm.es/ricsmur/handle/123456789/21281
dc.description.abstract Myelodysplastic neoplasms (MDS) are a heterogeneous group of hematological stem cell disorders characterized by dysplasia, cytopenias, and increased risk of acute leukemia. As prognosis differs widely between patients, and treatment options vary from observation to allogeneic stem cell transplantation, accurate and precise disease risk prognostication is critical for decision making. With this aim, we retrieved registry data from MDS patients from 90 Spanish institutions. A total of 7202 patients were included, which were divided into a training (80%) and a test (20%) set. A machine learning technique (random survival forests) was used to model overall survival (OS) and leukemia-free survival (LFS). The optimal model was based on 8 variables (age, gender, hemoglobin, leukocyte count, platelet count, neutrophil percentage, bone marrow blast, and cytogenetic risk group). This model achieved high accuracy in predicting OS (c-indexes; 0.759 and 0.776) and LFS (c-indexes; 0.812 and 0.845). Importantly, the model was superior to the revised International Prognostic Scoring System (IPSS-R) and the age-adjusted IPSS-R. This difference persisted in different age ranges and in all evaluated disease subgroups. Finally, we validated our results in an external cohort, confirming the superiority of the Artificial Intelligence Prognostic Scoring System for MDS (AIPSS-MDS) over the IPSS-R, and achieving a similar performance as the molecular IPSS. In conclusion, the AIPSS-MDS score is a new prognostic model based exclusively on traditional clinical, hematological, and cytogenetic variables. AIPSS-MDS has a high prognostic accuracy in predicting survival in MDS patients, outperforming other well-established risk-scoring systems.
dc.language.iso eng
dc.publisher WILEY
dc.rights Atribución/Reconocimiento 4.0 Internacional
dc.rights.uri https://creativecommons.org/licenses/by/4.0/ *
dc.title Machine Learning Improves Risk Stratification in Myelodysplastic Neoplasms: An Analysis of the Spanish Group of Myelodysplastic Syndromes
dc.type info:eu-repo/semantics/article
dc.identifier.pmid 37841754
dc.relation.publisherversion https://journals.lww.com/10.1097/HS9.0000000000000961
dc.identifier.doi 10.1097/HS9.0000000000000961
dc.journal.title Hemasphere
dc.identifier.essn 2572-9241


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución/Reconocimiento 4.0 Internacional Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución/Reconocimiento 4.0 Internacional

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta