Repositorio Dspace

A prognostic model to identify short survival expectancy of medical oncology patients at the time of hospital discharge

Mostrar el registro sencillo del ítem

dc.contributor.author Vicente-Conesa, M-A
dc.contributor.author Zafra-Poves, M
dc.contributor.author Carmona-Bayonas, A
dc.contributor.author Ballester-Navarro, I
dc.contributor.author de-la-Morena-Barrio, P
dc.contributor.author Ivars-Rubio, A
dc.contributor.author Montenegro-Luis, S
dc.contributor.author García-Garre, E
dc.contributor.author Vicente, V
dc.contributor.author Ayala-de-la-Peña, F
dc.date.accessioned 2025-10-20T14:37:55Z
dc.date.available 2025-10-20T14:37:55Z
dc.date.issued 2022-02
dc.identifier.citation Vicente Conesa MA, Zafra Poves M, Carmona-Bayonas A, Ballester Navarro I, De La Morena Barrio P, Ivars Rubio A, et al. A prognostic model to identify short survival expectancy of medical oncology patients at the time of hospital discharge. ESMO Open. febr
dc.identifier.uri https://sms.carm.es/ricsmur/handle/123456789/20441
dc.description.abstract Background: Hospitalization of cancer patients is associated with poor overall survival, but prognostic misclassification may lead to suboptimal therapeutic decisions and transitions of care. No model is currently available for stratifying the heterogeneous population of oncological patients after a hospital admission to a general Medical Oncology ward. We developed a multivariable prognostic model based on readily available and objective clinical data to estimate survival in oncological patients after hospital discharge.Methods: A multivariable model and nomogram for overall survival after hospital discharge was developed in a retrospective training cohort and prospectively validated in an independent set of adult patients with solid tumors and a first admission to a unit of medical oncology. Performance of the model was assessed by C-index and Kaplan-Meier survival curves stratified by risk categories.Results: From a population of 1089 patients with a first hospitalization, 757 patients were included in the training group [median survival, 43 weeks; 95% confidence interval (CI), 37-51 weeks] and 200 patients in the validation cohort (median survival, 44 weeks; 95% CI, 34 weeks-not reached). An accelerated failure time log-normal model was built, including five variables (primary tumor, stage, cause of admission, active treatment, and age). The C-index was 0.71 (95% CI, 0.69-0.73), with a good calibration, and adequate validation in the prospective cohort (C-index: 0.69; 95% CI, 0.65-0.74). Median survival in three predefined model-based risk groups was 10.7 weeks (high), 27.0 weeks (intermediate), and 3 years (low) in the training cohort, with comparable values in the validation cohort.Conclusions: In oncological patients, individualized predictions of survival after hospitalization were provided by a simple and validated model. Further evaluation of the model might determine whether its use improves shared decision making at discharge.
dc.language.iso eng
dc.publisher ELSEVIER
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/ *
dc.subject.mesh Adult
dc.subject.mesh Hospitals
dc.subject.mesh Humans
dc.subject.mesh Medical Oncology
dc.subject.mesh Neoplasms/therapy
dc.subject.mesh Patient Discharge
dc.subject.mesh Prognosis
dc.subject.mesh Prospective Studies
dc.subject.mesh Retrospective Studies
dc.title A prognostic model to identify short survival expectancy of medical oncology patients at the time of hospital discharge
dc.type info:eu-repo/semantics/article
dc.identifier.pmid 35144121
dc.relation.publisherversion https://dx.doi.org/10.1016/j.esmoop.2022.100384
dc.type.version info:eu-repo/semantics/publishedVersion
dc.identifier.doi 10.1016/j.esmoop.2022.100384
dc.journal.title Esmo Open
dc.identifier.essn 2059-7029


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta