Repositorio Dspace

Machine Learning-Based Analysis in the Management of Iatrogenic Bile Duct Injury During Cholecystectomy: a Nationwide Multicenter Study

Mostrar el registro sencillo del ítem

dc.contributor.author López-López, Víctor
dc.contributor.author Maupoey, Javier
dc.contributor.author López-Andujar, Rafael
dc.contributor.author Ramos, Emilio
dc.contributor.author Mils, Kristel
dc.contributor.author Martínez, Pedro-Antonio
dc.contributor.author Valdivieso, Andrés
dc.contributor.author Garcés-Albir, Marina
dc.contributor.author Sabater, Luis
dc.contributor.author Díez-Valladares, María
dc.contributor.author Pérez, Sergio-Annese
dc.contributor.author Flores, Benito
dc.contributor.author Brusadin, Roberto
dc.contributor.author López-Conesa, Asunción
dc.contributor.author Cayuela, Valentín
dc.contributor.author Martínez-Cortijo, Sagrario
dc.contributor.author Paterna, Sandra
dc.contributor.author Serrablo, Alejando
dc.contributor.author Sánchez-Cabus, Santiago
dc.contributor.author González-Gil, Antonio
dc.contributor.author González-Masia, José-Antonio
dc.contributor.author Loinaz, Carmelo
dc.contributor.author Lucena, José-Luis
dc.contributor.author Pastor, Patricia
dc.contributor.author García-Zamora, Cristina
dc.contributor.author Calero, Alicia
dc.contributor.author Valiente, Juan
dc.contributor.author Minguillon, Antonio
dc.contributor.author Rotellar, Fernando
dc.contributor.author Ramia, José-Manuel
dc.contributor.author Alcázar, Cándido
dc.contributor.author Aguiló, Javier
dc.contributor.author Cutillas, José
dc.contributor.author Kuemmerli, Christoph
dc.contributor.author Ruiperez-Valiente, José-A
dc.contributor.author Robles-Campos, Ricardo
dc.date.accessioned 2025-11-18T09:28:29Z
dc.date.available 2025-11-18T09:28:29Z
dc.date.issued 2022-08
dc.identifier.citation Lopez-Lopez V, Maupoey J, López-Andujar R, Ramos E, Mils K, Martinez PA, et al. Machine Learning-Based Analysis in the Management of Iatrogenic Bile Duct Injury During Cholecystectomy: a Nationwide Multicenter Study. Journal of Gastrointestinal Surgery. agosto de 2022;26(8):1713-23.
dc.identifier.issn 1091-255X
dc.identifier.uri https://sms.carm.es/ricsmur/handle/123456789/20767
dc.description.abstract BACKGROUND: Iatrogenic bile duct injury (IBDI) is a challenging surgical complication. IBDI management can be guided by artificial intelligence models. Our study identified the factors associated with successful initial repair of IBDI and predicted the success of definitive repair based on patient risk levels. METHODS: This is a retrospective multi-institution cohort of patients with IBDI after cholecystectomy conducted between 1990 and 2020. We implemented a decision tree analysis to determine the factors that contribute to successful initial repair and developed a risk-scoring model based on the Comprehensive Complication Index. RESULTS: We analyzed 748 patients across 22 hospitals. Our decision tree model was 82.8% accurate in predicting the success of the initial repair. Non-type E (p-<-0.01), treatment in specialized centers (p-<-0.01), and surgical repair (p-<-0.001) were associated with better prognosis. The risk-scoring model was 82.3% (79.0-85.3%, 95% confidence interval [CI]) and 71.7% (63.8-78.7%, 95% CI) accurate in predicting success in the development and validation cohorts, respectively. Surgical repair, successful initial repair, and repair between 2 and 6 weeks were associated with better outcomes. DISCUSSION: Machine learning algorithms for IBDI are a novel tool may help to improve the decision-making process and guide management of these patients.
dc.language.iso eng
dc.publisher Elsevier Science Inc
dc.subject.mesh Abdominal Injuries/surgery
dc.subject.mesh Artificial Intelligence
dc.subject.mesh Bile Duct Diseases
dc.subject.mesh Bile Ducts/injuries/surgery
dc.subject.mesh Cholecystectomy/adverse effects
dc.subject.mesh Cholecystectomy, Laparoscopic/adverse effects
dc.subject.mesh Humans
dc.subject.mesh Iatrogenic Disease
dc.subject.mesh Intraoperative Complications/surgery
dc.subject.mesh Machine Learning
dc.subject.mesh Retrospective Studies
dc.title Machine Learning-Based Analysis in the Management of Iatrogenic Bile Duct Injury During Cholecystectomy: a Nationwide Multicenter Study
dc.type info:eu-repo/semantics/article
dc.identifier.pmid 35790677
dc.relation.publisherversion https://linkinghub.elsevier.com/retrieve/pii/S1091255X23057426
dc.identifier.doi 10.1007/s11605-022-05398-7
dc.journal.title Journal of Gastrointestinal Surgery
dc.identifier.essn 1873-4626


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta