Repositorio Dspace

Efficiency of Machine Learning Algorithms for the Determination of Macrovesicular Steatosis in Frozen Sections Stained with Sudan to Evaluate the Quality of the Graft in Liver Transplantation

Mostrar el registro sencillo del ítem

dc.contributor.author Pérez-Sanz, Fernando
dc.contributor.author Riquelme-Pérez, Miriam
dc.contributor.author Martínez-Barba, Enrique
dc.contributor.author de-la-Peña-moral, Jesús
dc.contributor.author Salazar-Nicolás, Alejandro
dc.contributor.author Carpes-Ruiz, Marina
dc.contributor.author Esteban-Gil, Ángel
dc.contributor.author Legaz-García, María-Del-Carmen
dc.contributor.author Parreno-González, María-Antonia
dc.contributor.author Ramírez, Pablo
dc.contributor.author Martínez, Carlos-M
dc.date.accessioned 2025-11-26T11:34:27Z
dc.date.available 2025-11-26T11:34:27Z
dc.date.issued 2021-03
dc.identifier.citation Pérez-Sanz F, Riquelme-Pérez M, Martínez-Barba E, De La Peña-Moral J, Salazar Nicolás A, Carpes-Ruiz M, et al. Efficiency of Machine Learning Algorithms for the Determination of Macrovesicular Steatosis in Frozen Sections Stained with Sudan to Evaluate the Quality of the Graft in Liver Transplantation. Sensors. 12 de marzo de 2021;21(6):1993.
dc.identifier.uri https://sms.carm.es/ricsmur/handle/123456789/22522
dc.description.abstract Liver transplantation is the only curative treatment option in patients diagnosed with end-stage liver disease. The low availability of organs demands an accurate selection procedure based on histological analysis, in order to evaluate the allograft. This assessment, traditionally carried out by a pathologist, is not exempt from subjectivity. In this sense, new tools based on machine learning and artificial vision are continuously being developed for the analysis of medical images of different typologies. Accordingly, in this work, we develop a computer vision-based application for the fast and automatic objective quantification of macrovesicular steatosis in histopathological liver section slides stained with Sudan stain. For this purpose, digital microscopy images were used to obtain thousands of feature vectors based on the RGB and CIE Lab pixel values. These vectors, under a supervised process, were labelled as fat vacuole or non-fat vacuole, and a set of classifiers based on different algorithms were trained, accordingly. The results obtained showed an overall high accuracy for all classifiers (>0.99) with a sensitivity between 0.844 and 1, together with a specificity >0.99. In relation to their speed when classifying images, KNN and Naïve Bayes were substantially faster than other classification algorithms. Sudan stain is a convenient technique for evaluating ME in pre-transplant liver biopsies, providing reliable contrast and facilitating fast and accurate quantification through the machine learning algorithms tested.
dc.language.iso eng
dc.publisher MDPI
dc.rights Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0 *
dc.subject.mesh Algorithms
dc.subject.mesh Bayes Theorem
dc.subject.mesh Frozen Sections
dc.subject.mesh Humans
dc.subject.mesh Liver Transplantation
dc.subject.mesh Machine Learning
dc.subject.mesh Sudan
dc.title Efficiency of Machine Learning Algorithms for the Determination of Macrovesicular Steatosis in Frozen Sections Stained with Sudan to Evaluate the Quality of the Graft in Liver Transplantation
dc.type info:eu-repo/semantics/article
dc.identifier.pmid 33808978
dc.relation.publisherversion https://www.mdpi.com/1424-8220/21/6/1993
dc.identifier.doi 10.3390/s21061993
dc.journal.title Sensors
dc.identifier.essn 1424-8220


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta