Repositorio Dspace

A predictive model for hospitalization and survival to COVID-19 in a retrospective population-based study

Mostrar el registro sencillo del ítem

dc.contributor.author Cisterna-García, Alejandro
dc.contributor.author Guillén-Teruel, Antonio
dc.contributor.author Caracena, Marcos
dc.contributor.author Pérez, Enrique
dc.contributor.author Jiménez, Fernando
dc.contributor.author Francisco-Verdu, Francisco-J
dc.contributor.author Reina, Gabriel
dc.contributor.author González-Billalabeitia, Enrique
dc.contributor.author Palma, José
dc.contributor.author Sánchez-Ferrer, Álvaro
dc.contributor.author Botia, Juan-A
dc.date.accessioned 2025-10-20T14:38:02Z
dc.date.available 2025-10-20T14:38:02Z
dc.date.issued 28/10/2022
dc.identifier.citation Cisterna-García A, Guillén-Teruel A, Caracena M, Pérez E, Jiménez F, Francisco-Verdú FJ, et al. A predictive model for hospitalization and survival to COVID-19 in a retrospective population-based study. Sci Rep. 28 de octubre de 2022;12(1):18126.
dc.identifier.issn 2045-2322
dc.identifier.uri https://sms.carm.es/ricsmur/handle/123456789/20450
dc.description.abstract The development of tools that provide early triage of COVID-19 patients with minimal use of diagnostic tests, based on easily accessible data, can be of vital importance in reducing COVID-19 mortality rates during high-incidence scenarios. This work proposes a machine learning model to predict mortality and risk of hospitalization using both 2 simple demographic features and 19 comorbidities obtained from 86,867 electronic medical records of COVID-19 patients, and a new method (LR-IPIP) designed to deal with data imbalance problems. The model was able to predict with high accuracy (90-93%, ROC-AUC= 0.94) the patient's final status (deceased or discharged), while its accuracy was medium (71-73%, ROC-AUC= 0.75) with respect to the risk of hospitalization. The most relevant characteristics for these models were age, sex, number of comorbidities, osteoarthritis, obesity, depression, and renal failure. Finally, to facilitate its use by clinicians, a user-friendly website has been developed (https://alejandrocisterna.shinyapps.io/PROVIA).
dc.language.iso eng
dc.publisher NATURE PORTFOLIO
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/ *
dc.subject.mesh Humans
dc.subject.mesh COVID-19/epidemiology
dc.subject.mesh Retrospective Studies
dc.subject.mesh ROC Curve
dc.subject.mesh Hospitalization
dc.subject.mesh Triage/methods
dc.title A predictive model for hospitalization and survival to COVID-19 in a retrospective population-based study
dc.type info:eu-repo/semantics/article
dc.identifier.pmid 36307436
dc.relation.publisherversion https://dx.doi.org/10.1038/s41598-022-22547-9
dc.type.version info:eu-repo/semantics/publishedVersion
dc.identifier.doi 10.1038/s41598-022-22547-9
dc.journal.title Scientific Reports


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/3.0/es/ Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta