Repositorio Dspace

Prediction of the mode of delivery using artificial intelligence algorithms

Mostrar el registro sencillo del ítem

dc.contributor.author De-Ramón-Fernández, Alberto
dc.contributor.author Ruiz-Fernández, Daniel
dc.contributor.author Prieto-Sánchez, María-Teresa
dc.date.accessioned 2025-05-06T10:39:45Z
dc.date.available 2025-05-06T10:39:45Z
dc.date.issued 2022
dc.identifier.citation De Ramón Fernández A, Ruiz Fernández D, Prieto Sánchez MT. Prediction of the mode of delivery using artificial intelligence algorithms. Comput Methods Programs Biomed. junio de 2022;219:106740.
dc.identifier.issn 1872-7565
dc.identifier.uri https://sms.carm.es/ricsmur/handle/123456789/18791
dc.description.abstract BACKGROUND AND OBJECTIVE: Mode of delivery is one of the issues that most concerns obstetricians. The caesarean section rate has increased progressively in recent years, exceeding the limit recommended by health institutions. Obstetricians generally lack the necessary technology to help them decide whether a caesarean delivery is appropriate based on antepartum and intrapartum conditions. METHODS: In this study, we have tested the suitability of using three popular artificial intelligence algorithms, Support Vector Machines, Multilayer Perceptron and, Random Forest, to develop a clinical decision support system for the prediction of the mode of delivery according to three categories: caesarean section, euthocic vaginal delivery and, instrumental vaginal delivery. For this purpose, we used a comprehensive clinical database consisting of 25,038 records with 48 attributes of women who attended to give birth at the Service of Obstetrics and Gynaecology of the University Clinical Hospital "Virgen de la Arrixaca" in the Murcia Region (Spain) from January of 2016 to January 2019. Women involved were patients with singleton pregnancies who attended to the emergency room on active labour or undergoing a planned induction of labour for medical reasons. RESULTS: The three implemented algorithms showed a similar performance, all of them reaching an accuracy equal to or above 90% in the classification between caesarean and vaginal deliveries and somewhat lower, around 87% between instrumental and euthocic. CONCLUSIONS: The results validate the use of these algorithms to build a clinical decision system to help gynaecologists to predict the mode of delivery.
dc.language.iso eng
dc.publisher Elsevier Ireland Ltd
dc.rights Atribución-NoComercial-SinDerivadas 4.0 España
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es *
dc.subject.mesh Artificial Intelligence
dc.subject.mesh Cesarean Section
dc.subject.mesh Female
dc.subject.mesh Humans
dc.subject.mesh Obstetrics
dc.subject.mesh Pregnancy
dc.subject.mesh Spain
dc.title Prediction of the mode of delivery using artificial intelligence algorithms
dc.type info:eu-repo/semantics/article
dc.identifier.pmid 35338883
dc.relation.publisherversion https://dx.doi.org/10.1016/j.cmpb.2022.106740
dc.type.version info:eu-repo/semantics/publishedVersion
dc.identifier.doi 10.1016/j.cmpb.2022.106740
dc.journal.title Computer Methods and Programs in Biomedicine
dc.identifier.essn 0169-2607


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 4.0 España Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 4.0 España

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta