Repositorio Dspace

Different Ventricular Fibrillation Types in Low-Dimensional Latent Spaces

Mostrar el registro sencillo del ítem

dc.contributor.author Onate, Carlos-Paul-Bernal
dc.contributor.author Meseguer, Francisco-Manuel-Melgarejo
dc.contributor.author Carrera, Enrique-V
dc.contributor.author Muñoz, Juan-José-Sánchez
dc.contributor.author Alberola, Arcadi-García
dc.contributor.author Álvarez, José-Luis-Rojo
dc.date.accessioned 2025-11-26T11:36:39Z
dc.date.available 2025-11-26T11:36:39Z
dc.date.issued 2023-03
dc.identifier.citation Bernal Oñate CP, Melgarejo Meseguer FM, Carrera EV, Sánchez Muñoz JJ, García Alberola A, Rojo Álvarez JL. Different Ventricular Fibrillation Types in Low-Dimensional Latent Spaces. Sensors. 24 de febrero de 2023;23(5):2527.
dc.identifier.uri https://sms.carm.es/ricsmur/handle/123456789/22596
dc.description.abstract The causes of ventricular fibrillation (VF) are not yet elucidated, and it has been proposed that different mechanisms might exist. Moreover, conventional analysis methods do not seem to provide time or frequency domain features that allow for recognition of different VF patterns in electrode-recorded biopotentials. The present work aims to determine whether low-dimensional latent spaces could exhibit discriminative features for different mechanisms or conditions during VF episodes. For this purpose, manifold learning using autoencoder neural networks was analyzed based on surface ECG recordings. The recordings covered the onset of the VF episode as well as the next 6 min, and comprised an experimental database based on an animal model with five situations, including control, drug intervention (amiodarone, diltiazem, and flecainide), and autonomic nervous system blockade. The results show that latent spaces from unsupervised and supervised learning schemes yielded moderate though quite noticeable separability among the different types of VF according to their type or intervention. In particular, unsupervised schemes reached a multi-class classification accuracy of 66%, while supervised schemes improved the separability of the generated latent spaces, providing a classification accuracy of up to 74%. Thus, we conclude that manifold learning schemes can provide a valuable tool for studying different types of VF while working in low-dimensional latent spaces, as the machine-learning generated features exhibit separability among different VF types. This study confirms that latent variables are better VF descriptors than conventional time or domain features, making this technique useful in current VF research on elucidation of the underlying VF mechanisms.
dc.language.iso eng
dc.publisher MDPI
dc.rights Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0 *
dc.subject.mesh Animals
dc.subject.mesh Ventricular Fibrillation
dc.subject.mesh Electrocardiography/methods
dc.subject.mesh Neural Networks, Computer
dc.title Different Ventricular Fibrillation Types in Low-Dimensional Latent Spaces
dc.type info:eu-repo/semantics/article
dc.identifier.pmid 36904731
dc.relation.publisherversion https://www.mdpi.com/1424-8220/23/5/2527
dc.identifier.doi 10.3390/s23052527
dc.journal.title Sensors
dc.identifier.essn 1424-8220


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta