Repositorio Dspace

Generalization and Regularization for Inverse Cardiac Estimators

Mostrar el registro sencillo del ítem

dc.contributor.author Melgarejo-Meseguer, Francisco-M
dc.contributor.author Everss-Villalba, Estrella
dc.contributor.author Gutierrez-Fernández-Calvillo, Miriam
dc.contributor.author Munoz-Romero, Sergio
dc.contributor.author Gimeno-Blanes, Francisco-Javier
dc.contributor.author García-Alberola, Arcadi
dc.contributor.author Rojo-Alvarez, José-Luis
dc.date.accessioned 2025-11-19T15:37:27Z
dc.date.available 2025-11-19T15:37:27Z
dc.date.issued 2022-10
dc.identifier.citation Melgarejo-Meseguer FM, Everss-Villalba E, Gutierrez-Fernandez-Calvillo M, Munoz-Romero S, Gimeno-Blanes FJ, Garcia-Alberola A, et al. Generalization and Regularization for Inverse Cardiac Estimators. IEEE Trans Biomed Eng. octubre de 2022;69(10):3029-38.
dc.identifier.issn 0018-9294
dc.identifier.uri https://sms.carm.es/ricsmur/handle/123456789/21325
dc.description.abstract Electrocardiographic Imaging (ECGI) aims to estimate the intracardiac potentials noninvasively, hence allowing the clinicians to better visualize and understand many arrhythmia mechanisms. Most of the estimators of epicardial potentials use a signal model based on an estimated spatial transfer matrix together with Tikhonov regularization techniques, which works well specially in simulations, but it can give limited accuracy in some real data. Based on the quasielectrostatic potential superposition principle, we propose a simple signal model that supports the implementation of principled out-of-sample algorithms for several of the most widely used regularization criteria in ECGI problems, hence improving the generalization capabilities of several of the current estimation methods. Experiments on simple cases (cylindrical and Gaussian shapes scrutinizing fast and slow changes, respectively) and on real data (examples of torso tank measurements available from Utah University, and an animal torso and epicardium measurements available from Maastricht University, both in the EDGAR public repository) show that the superposition-based out-of-sample tuning of regularization parameters promotes stabilized estimation errors of the unknown source potentials, while slightly increasing the re-estimation error on the measured data, as natural in non-overfitted solutions. The superposition signal model can be used for designing adequate out-of-sample tuning of Tikhonov regularization techniques, and it can be taken into account when using other regularization techniques in current commercial systems and research toolboxes on ECGI.
dc.language.iso eng
dc.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.rights Atribución/Reconocimiento 4.0 Internacional
dc.rights.uri https://creativecommons.org/licenses/by/4.0/legalcode *
dc.subject.mesh Algorithms
dc.subject.mesh Animals
dc.subject.mesh Body Surface Potential Mapping/methods
dc.subject.mesh Electrocardiography/methods
dc.subject.mesh Humans
dc.subject.mesh Normal Distribution
dc.subject.mesh Pericardium/diagnostic imaging
dc.title Generalization and Regularization for Inverse Cardiac Estimators
dc.type info:eu-repo/semantics/article
dc.identifier.pmid 35294340
dc.relation.publisherversion https://ieeexplore.ieee.org/document/9736595/
dc.identifier.doi 10.1109/TBME.2022.3159733
dc.journal.title Ieee Transactions On Biomedical Engineering
dc.identifier.essn 1558-2531


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución/Reconocimiento 4.0 Internacional Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución/Reconocimiento 4.0 Internacional

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta